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Abstract

If ℓ : V (G) → N is a vertex labeling of a graph G = (V (G), E(G)), then the
d-lucky sum of a vertex u ∈ V (G) is dℓ(u) = dG(u)+

∑
v∈N(u) ℓ(v). The labeling ℓ is

a d-lucky labeling if dℓ(u) ̸= dℓ(v) for every uv ∈ E(G). The d-lucky number ηdl(G)
of G is the least positive integer k such that G has a d-lucky labeling V (G) → [k]. A
general lower bound on the d-lucky number of a graph in terms of its clique number
and related degree invariants is proved. The bound is sharp as demonstrated with
an infinite family of corona graphs. The d-lucky number is also determined for the
so-called Gm,n-web graphs and graphs obtained by attaching the same number of
pendant vertices to the vertices of a generalized cocktail-party graph.
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1 Introduction

In the celebrated paper [14], Karoński,  Luczak, and Thomason asked whether the edges
of any graph with no component K2 can be assigned weights from {1, 2, 3} so that ad-
jacent vertices have different sums of incident edge weights, in other words, such that
the resultant vertex weighting is a proper coloring. Although the paper does not use the
word “conjecture” for the question, it later (quite naturally) became known as the 1-2-3
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Conjecture. The progress on the conjecture until 2012 has been surveyed in [21], while
for recent progress see [11, 13] and references therein.

The paper [14] can also be seen as the seed for the investigation of other types of
graph labelings in which integers are assigned to some elements of the graph (vertices,
edges, or both of them), such that the labeling yields a proper vertex coloring. For us, the
most important such labelings are due to Czerwiński, Grytczuk, and Żelazny, who in [7]
introduced the concept of the lucky labeling and proposed the conjecture η(G) ≤ χ(G),
where η(G) is the lucky number of G (and, of course, χ(G) is the chromatic number
of G). For more information on the lucky labelings see [1, 2]. Similar to the lucky
number, Chartrand, Okamoto, and Zhang [5] introduced sigma colorings, where the value
at a vertex is obtained as the sum of the weights in its neighborhood. Club scheduling
problems and hospital planning are real life applications of sigma colorings, cf. [15]. For
additional related labelings we refer to [8]. We mention in passing that graph labelings
have a variety of applications such as incorporating redundancy in disks, designing drilling
machines, creating layouts for circuit boards, and configuring resistor networks, see [23].
Finally, different graph labelings were and are still extensively investigated, we refer to
the recent developments on antimagic labelings [4, 16, 17], (d, 1)-labelings [10, 19], and
cordial labelings [20, 22], to mention just some of them.

In this paper we are interested in d-lucky labelings that were introduced by Miller et
al. [18] as a variant of the lucky labelings as follows. Let N(u) = {v ∈ V (G) : uv ∈ E(G)}
be the open neighborhood of a vertex u in a graph G. If ℓ : V (G) → N is a vertex labeling,
then the d-lucky sum of a vertex u ∈ V (G) with respect to ℓ is

dℓ(u) = dG(u) +
∑

v∈N(u)

ℓ(v) ,

where dG(u) is the degree of u. The labeling ℓ is a d-lucky labeling if dℓ(u) ̸= dℓ(v)
holds for every pair of adjacent vertices u and v. The d-lucky number ηdl(G) of G is
the least positive integer k such that G admits a d-lucky labeling ℓ : V (G) → [k] =
{1, . . . , k}. Lucky labelings are obtained from d-lucky labelings by omitting the additive
term dG(u). A closely related concept of the adjacent vertex distinguishing colorings is
defined analogously, except that one adds up the labels in the closed neighborhood of a
vertex, see [3, 9].

In the next section we prove a general lower bound on the d-lucky number of a graph
in terms of its clique number and related degree invariants. The bound is sharp as
demonstrated with an infinite family of corona graphs. The latter result is in turn used in
Section 3 to determine the d-lucky number of the so called Gm,n-web graphs. We conclude
the paper with the d-lucky number of graphs obtained by attaching the same number of
pendant vertices to the vertices of a generalized cocktail-party graph.
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2 A Lower bound on the d-lucky number

In this section we give a lower bound on ηdl(G) of a graph G in terms of its clique number
ω(G) (that is, the size of a largest complete subgraph) and demonstrate that the bound
is sharp.

To state the main result we need the following notation. If Q is a clique of G, then
let δG(Q) and ∆G(Q) be the minimum and the maximum degree in G among the vertices
from Q, respectively. Let further Q(G) be the set of largest cliques of G. Then we have:

Theorem 2.1. If G is a connected graph, then

ηdl(G) ≥ max
Q∈Q(G)

⌈
2δG(Q) − ∆G(Q) + 1

∆G(Q) − ω(G) + 2

⌉
.

Proof. Let ω(G) = s and let Q ∈ Q(G), so that |n(Q)| = s. Let ηdl(G) = k and let
ℓ : V (G) → [k] be a d-lucky labeling of G. Set

x =
∑

u∈V (Q)

ℓ(u) .

If u ∈ V (Q) and ℓ(u) = i ∈ [k], then

(x− i) + (dG(u) − (s− 1)) + dG(u) ≤ dℓ(u) ≤ (x− i) + k(dG(u) − (s− 1)) + dG(u) .

Since ℓ(u) ∈ [k], the largest possible value of dℓ(u) is (x−1) +k(∆G(Q)− s+ 1) + ∆G(Q),
and the smallest possible value of dℓ(u) is (x− k) + (δG(Q) − s + 1) + δG(Q). Therefore,
vertices from Q receive at most

N = [(x− 1) + k(∆G(Q) − s + 1) + ∆G(Q)] − [(x− k) + (δG(Q) − s + 1) + δG(Q)] + 1

distinct dℓ-sum values. Since the vertices of Q receive pairwise different labels, N ≥ s
must hold. From this inequality a straightforward computation yields

k(∆G(Q) − s + 2) ≥ 2δG(Q) − ∆G(Q) + 1 .

The assertion now follows because this inequality holds true for any clique from Q and
since the d-lucky number is an integer.

Theorem 2.1 significantly simplifies for certain classes of graphs, an instance is pre-
sented in the next result.

Corollary 2.2. If G is a connected graph and every vertex v in any largest clique of G
has degG(v) = r, then

ηdl(G) ≥
⌈

r + 1

r − ω(G) + 2

⌉
.
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To see that Corollary 2.2 (and hence also Theorem 2.1) is sharp, consider complete
graphs Kn which are (n−1)-regular with ω(Kn) = n. Thus Corollary 2.2 implies ηdl(Kn) ≥
n. To find another (non-trivial) family of such graphs recall that the corona G ◦ H of
graphs G and H is defined as follows. Let V (G) = [n] and let H be a graph. Then G ◦H
is obtained from the disjoint union of G and n disjoint copies H1, . . . , Hn of the graph
H, where the the vertex i ∈ V (G) is connected with an edge to every vertex of Hi. Let
further G denote the complement of G. Then we have:

Theorem 2.3. If n ≥ 2 and r ≥ 1, then

η
dl

(Kn ◦Kr) =

⌈
n + r

r + 1

⌉
.

Proof. To shorten the notation, set Gn,r = Kn◦Kr. Clearly, ω(Gn,r) = n and every vertex
v in the largest clique Kn of Gn,r has d

Gn,r
(v) = n − 1 + r. Hence Corollary 2.2 gives

η
dl

(Kn ◦Kr) ≥
⌈
n+r
r+1

⌉
.

To prove the reverse inequality, let X = {v1, . . . , vn} be the vertex set of the subgraph
Kn of Gn,r and let Xi, i ∈ [n], be the set of pendant vertices of Gn,r adjacent to vi.

Suppose first that n ≤ r + 1. In this case label all the vertices of X with 1. Further,
if i ∈ [n], then label (i − 1) vertices from Xi with 2 and the other r − i + 1 vertices of
Xi with label 1, See Fig. 1(a). As n ≤ r + 1, the sums of the labels in Xi and Xj are
different for all i ̸= j. Hence, this labeling is a d-lucky labeling with two labels and so
η
dl

(Kn ◦Kr) ≤ 2. We observe that as n ≥ 2,

n + r

r + 1
≥ 2 + r

r + 1
> 1

and as n ≤ r + 1,
n + r

r + 1
≤ 2r + 1

r + 1
= 1 +

r

r + 1
< 2 .

Therefore
⌈
n+r
r+1

⌉
= 2. Thus η

dl
(Kn ◦Kr) ≤

⌈
n+r
r+1

⌉
.

Assume now that n > r+1. In this case label the vertices v1, v2, . . . , vkr−r+1 of X with
1 and the remaining n−(kr − r + 1) vertices in X with labels 2, 3, . . . , n−(kr − r + 1)+1,
where k =

⌈
n+r
r+1

⌉
. Label vertices in X

i
, 1 ≤ i ≤ kr− r + 1 with labels such that the sums

x
i
’s, 1 ≤ i ≤ kr − r + 1 are all distinct lying between r and kr. Further, label all other

pendant vertices as 1. See Figure 1(b). The contribution to the dℓ-sums of the kr− r + 1
vertices of X which are labeled 1 are, respectively,

x− 1 + r, x− 1 + (r + 1) , . . . , x− 1 + kr

and the contribution to the dℓ-sums of the remaining n− (kr − r + 1) vertices of X are,
respectively,

x− 2 + r, x− 3 + r, . . . , x− (n− kr + r) + r .
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Figure 1: (a) d-lucky labeling of G5,4 (b) d-lucky labeling of G11,1

Since the degree of every vertex in X is t = n − 1 + r, the dℓ-sums of the vertices of X
are t + x + r − (n− kr + r) , t + x + r − (n− kr + r) + 1, . . . , t + x + r − 3, t + x +
r − 2, t + x + r − 1, t + x + r, t + x + r + 1, . . . , t + x + r + (kr − r − 1), which are
consecutive integers between t + x + kr − n and t + x + kr − 1. Thus all vertices of X
receive distinct consecutive dℓ-sums. Since the pendant vertices form an independent set,
the labels of these vertices do not contribute to the d-lucky number. As n > r + 1, the
sums of the labels in Xi and Xj are different for all i ̸= j. Therefore,

η
dl

(Kn ◦Kr) ≤ n− (kr − r + 1) + 1 = (n + r) −
⌈
n + r

r + 1

⌉
r

≤ (n + r) −
(
n + r

r + 1

)
r ≤ n + r

r + 1
≤

⌈
n + r

r + 1

⌉
.

We conclude that η
dl

(Kn ◦Kr) =
⌈
n+r
r+1

⌉
.

Theorem 2.3 thus gives an infinite, non-trivial family of graphs for which the equality
is achieved in Theorem 2.1.

3 More exact d-lucky numbers

In this section we determine the d-lucky number of two infinite families of graphs. With
the aid of Theorem 2.3 we obtain the d-lucky number of the Gm,n-web graphs defined
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below. At the end of the section we then present the d-lucky number of graphs obtained
by attaching the same number of pendant vertices to the vertices of a generalized cocktail-
party graph.

For m,n ≥ 3, set Cm,n = Pm �Cn , where � denotes the standard Cartesian product
of graphs [12]. The graphs Cm,n are sometimes called cylinders. Let us call the edges of
Cm,n that project on Pm radial edges of Cm,n, and the other edges (that is, those that
project on Cn) cycle edges. Further, the two Cn-layers whose vertices are of degree 3
will be called the top layer and the bottom layer, respectively, while the other Cn-layers
will be referred to as layer 1,. . . , layer (m− 2), see Fig. 2(a). Now, the Gm,n-web graph
is obtained from the disjoint union of Cm,n and Kn by adding a matching between the
top layer of Cm,n and the vertices of Kn, subdividing each of these matching edges, and
subdividing all the edges of the Cm-layers of Cm,n. See Fig. 2(b) and Fig. 2(c) for G3,6

and G4,6, respectively.
The edges of Gm,n obtained by subdividing the matching edges between Cm,n and

Kn will be called pendant-subdivided edges, and the edges obtained by subdividing the
Cm-layers cycle-subdivided edges, see Fig. 2(c) again. The result of this section now reads
as follows.

Theorem 3.1. If m ≥ 3 and n ≥ 5, then η
dl

(Gm,n) =
⌈
n+1
2

⌉
.

Proof. To simplify the notation, set G = Gm,n for the rest of the proof. Note first that Kn

is the unique largest clique of G, its vertices being of degree n in G, hence by Corollary 2.2,
η
dl

(G) ≥
⌈
n+1
2

⌉
. It thus remains to prove that G admits a d-lucky labeling using

⌈
n+1
2

⌉
labels.

Let V (Kn) = {v1 , . . . , vn}, let u1 , . . . , un be the respective adjacent vertices of G
obtained by subdividing the matching edges between Kn and Cm,n, and let w1 , . . . , wn be
the corresponding vertices of the top layer of Cn. Let H be the subgraph of G induced
by the vertices u1 , . . . , un , v1 , . . . , vn .

Set k =
⌈
n+1
2

⌉
and construct a labeling ℓ : V (G) → [k] as follows. Let ℓ restricted to

H be the labeling of Kn ◦K1 = H with η
dl

(H) = k labels from the proof of Theorem 2.3.

This labeling yields consecutive numbers n2+10n
8

+ j, j ∈ [n], as d
ℓ
-sums of vertices of Kn,

when n is even, and consecutive numbers n2+12n−5
8

+ j, j ∈ [n], as d
ℓ
-sums of vertices of

Kn when n is odd. Next, for every i ∈ [n] set ℓ(wi) = 1 when m is odd, and ℓ(wi) = 2
when m is even. Next, label the remaining unlabeled vertices with labels 1 and 2 such
that each vertex labeled 1 has all neighbors labeled 2 and vice versa, every edge adjacent
to vertex labeled 1 as 2 and vice versa. (Note that this is possible as G−Kn is bipartite.)
Finally, if m is even and n ≥ 15, redefine ℓ(w

k+7
) = 3, and if m is odd and n ≥ 8, redefine

ℓ(w5) = 3 and l(w
k+3

) = 3.
For every edge e = uv of G, we have to prove that dℓ(u) ̸= dℓ(v) and consider typical

edges.

Case 1: e = uivi, i ∈ [n].
Since the degree of each vertex of Kn in G is n and it is possible to label each vertex of

6



(a) (b)

(15)1

1(16)
1(17)

1(18)

2(14)(13)3

1(4)

(4)2
(4)3

4(4)

1(5)
1(6)

(11)1

(4)2

1(12) 2(4)
1(13)

2(4)

1(14)

2(4)

1(11)
2(4)1(11)

(4)2

(8)2

(6)1

2(8) 1(6)
2(8)

1(6)

2(8)

1(6)

2(8)
1(6)2(8)

(6)1

(9)1

(4)2

1(9) 2(4) 1(9)

2(4)

1(9)

2(4)

1(9)2(4)1(9)

(4)2

Cycle Edge

Radial Edge

w2
w

3
w

4w
5w

6

Top layer

Bottom layer

w
2

w
3

w
4

w
5

w
6

w
1

w1

Layer 1

(c)

(15)1

1(16)
1(17)

1(18)

2(14)(13)3

1(5)

(5)2
(5)3

4(5)

(6)11(7)

(8)2

(6)1

2(9) 1(6)
2(10)

1(6)

2(11)

1(6)

2(8)
1(6)

(8)2

(6)1

(12)1

(4)2

1(12) 2(4)
1(12)

2(4)

1(12)

2(4)

1(12)
2(4)1(12)

(4)2

(8)2

(6)1

2(8) 1(6)
2(8)

1(6)

2(8)

1(6)

2(8)
1(6)2(8)

(6)1

(4)2

(4)2

1(9) 1(9)

1(9)

1(9)1(9)

(9)1

2(4)

2(4)

2(4)

2(4)

cycle-

subdivided

edges

pendant-subdivided

edges

v
5

u
5

w
4

u
4

v
4

v
3

u
3

u
2

v
2

v
1

u
1

w
6

u
6

v
6

w
5

x
5

x
6

x
1

x
2

x
3

x
4

w
2

w
3

w
1

Figure 2: (a) P3�C6 (b) d-lucky labeling of the G3,6-web graph (c) d-lucky labeling of
the G4,6-web graph

Kn as 1, the d
ℓ
-sum of a vertex vi ∈ V (Kn), i ∈ [n], is at least (n − 1) + 1 + n = 2n if

m is even and at least (n − 1) + 2 + n = 2n + 1 if m is odd. In other words, for all n,
the minimum d

ℓ
-sum of a vertex in Kn is 2n. On the other hand, for all n, the maximum

d
ℓ
-sum of a vertex u

i
, i ∈ [n], is k + 5 =

⌈
n+1
2

⌉
+ 5. By a straightforward induction we

can see that
⌈
n+1
2

⌉
+ 5 < 2n holds for n ≥ 5. Hence the d

ℓ
-sums of the adjacent vertices

7



v
i

and u
i

are distinct.

Case 2: e = uiwi, i ∈ [n].
By our labeling, k vertices, say v1 , . . . , vk

are labeled 1 and the corresponding adjacent
vertices u1 , . . . , uk

are labeled 1, . . . , k. Further, ℓ
(
v
k+i

)
= 2, 3, . . . , n− k + 1, i ∈ [n− k]

and ℓ
(
u

k+i

)
= 1, i ∈ [n− k].

Suppose first that m is even. For 5 ≤ n ≤ 14, ℓ(w
i
) = 1, i ∈ [n], and for n ≥ 15,

ℓ(w
i
) =

{
1; i ∈ [n] and i ̸= k + 7,
3, i = k + 7.

Hence when 5 ≤ n ≤ 14 we have

dℓ(ui
) =

{
4; i ∈ [k],
i− k + 4; k + 1 ≤ i ≤ n,

and

dℓ(wi
) =

{
i + 10; i ∈ [k],
11; k + 1 ≤ i ≤ n.

If n ≥ 15, then we have

dℓ(ui
) =


4; i ∈ [k],
i− k + 4; k + 1 ≤ i ≤ n and i ̸= k + 7,
13; i = k + 7,

and

dℓ(wi
) =

{
i + 10; i ∈ [k],
11, k + 1 ≤ i ≤ n.

Suppose now that dℓ(ui
) = dℓ(wi

). Since n ≥ 5 this implies that i − k + 4 = 11, that is,
i = k + 7, where k + 1 ≤ i ≤ n. Now k + 7 ≤ n, that is,

⌈
n+1
2

⌉
+ 7 ≤ n, yields n ≥ 15.

But then dℓ(ui
) = 13 ̸= 11 = dℓ(wi

) for i = k + 7. This completes the argument when m
is even.

Suppose next that m is odd. For 5 ≤ n ≤ 14, ℓ(w
i
) = 2, i ∈ [n], and for n ≥ 15,

ℓ(w
i
) =

{
2; i ∈ [n] and i ̸= 5, k + 3,
3; i = 5 or i = k + 3.

Therefore, if 5 ≤ n ≤ 7 we have

dℓ(ui
) =

{
5; i ∈ [k],
i− k + 5; k + 1 ≤ i ≤ n,

and

dℓ(wi
) =

{
i + 7; i ∈ [k],
8, k + 1 ≤ i ≤ n.
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And if n ≥ 8, then we have

dℓ(ui
) =


5; i ∈ [4] or 6 ≤ i ≤ k,
6; i = 5,
i− k + 5; k + 1 ≤ i ≤ n and i ̸= k + 3,
9; i = k + 3,

and

dℓ(wi
) =

{
i + 7; i ∈ [k],
8; k + 1 ≤ i ≤ n.

As in the case when m was even, we can prove that for if n ≥ 5, then dℓ(ui
) ̸= dℓ(wi

) for
i ∈ [n].

Case 3: e is a radial edge.
We begin with the radial edges w

i
x

i
, i ∈ [n], where x

i
are vertices of layer 1 of the

subgraph Cm,n of G.
Suppose first that m is even. Then dℓ(xi

) = 8 and dℓ(wi
) ≥ 11 for i ∈ [n]. It follows

that the end vertices of the radial edges w
i
x

i
receive distinct d

ℓ
-sums.

Assume next that m is odd. Then

dℓ(xi
) =

{
12; i ∈ [4] or 6 ≤ i ≤ n or i ≤ k + 3,
13, i = 5 or i = k + 3.

If 8 ≤ dℓ(wi
) ≤ k + 7, then

dℓ(wi
) =

{
7 + i; i ∈ [k],
8, k + 1 ≤ i ≤ n.

If i = 5, then dℓ(wi
) = 12 ̸= 13 = dℓ(xi

), and if i ̸= 5, then dℓ(wi
) ̸= dℓ(xi

). Thus the end
vertices of the edges e = w

i
x

i
, i ∈ [n] receive distinct d

ℓ
-sums.

The end vertices of radial edges which are in layers 1, . . . ,m − 2 receive d
ℓ
-sums 8

and 12, respectively. The radial edges with one end-vertex in layer m − 1 and the other
end-vertex in the bottom layer, receive d

ℓ
-sums 8 and 9, respectively.

Case 4: e is a cycle-subdivided edge.
If v is a vertex subdividing a cycle edge, then, for all m,n we have max dℓ(v) = 6, whereas
mini∈[n] dℓ(wi

) = 8. Hence the d
ℓ
-sums of end vertices of cycle-subdivided edges are also

distinct.

A generalized cocktail-party graph Hn,t, n, t ≥ 1, is the complete t-partite graph with
each partite set of order n, cf. [6]. If n, t, r ≥ 1, set Hn,t,r = Hn,t ◦Kr. That is, Hn,t,r is
obtained from Hn,t by attaching r pendant vertices at each of its vertices.

Theorem 3.2. If n, r ≥ 1 and t ≥ 2, then η
dl

(Hn,t,r) =
⌈
t+n+r−1

n+r

⌉
.
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Proof. To simplify the notation, set G = Hn,t,r for the rest of the proof.
Let ℓ : V (G) → [k] be an optimal d-lucky labeling of G and set

x =
∑

u∈V (Hn,t)

ℓ(u) .

The minimum d
ℓ
-sum and the maximum d

ℓ
-sum of a vertex of G from Hn,t are r + r +

(nt− n) + (x− nk) and rk + r + (nt− n) + (x− n) respectively. Therefore the number
of distinct d

ℓ
-sums of the vertices from from Hn,t is at most

[(rk + r) + (nt− n) + (x− n)] − [r + r + (nt− n) + (x− nk)] + 1 ,

which simplifies to k(n + r) − (n + r) + 1. Since the d
ℓ
-sums of vertices from Hn,t that

belong to different partite sets are different, this implies that t ≤ k(n + r) − (n + r) + 1.
Thus η

dl
(G) = k ≥

⌈
t+n+r−1

n+r

⌉
.

For the other inequality, set k =
⌈
t+n+r−1

n+r

⌉
, let p =

⌊
t−(kr−r+1)

n

⌋
, and let q = (t−(kr−

r + 1)) mod n. Let V1 , . . . , Vt be the t-partite sets of Hn,t . Let W = {V1 , . . . , Vkr−r+1
}, let

Uj = {V
kr−r+1+(j−1)n+1

, . . . , V
kr−r+1+(j−1)n+n

}, j ∈ [p], and let Up+1 = {V
kr−r+1+pn+1

, . . . , Vt}.
Note that |W| = kr − r + 1, |Uj| = n, and |Up+1| = q. In particular, if n divides
t− (kr − r + 1), then Up+1 = ∅.

We now define ℓ : V (G) → [k] as follows.

• The vertices in all the parts of W are labeled 1.

• For j ∈ [p + 1] label all the vertices of the partite sets in Uj with j + 1.

• Label every set of r pendant vertices adjacent to each vertex of the partite set
Vi from W with equal label sequences (ℓ

i

1
, . . . , ℓir), i ∈ [kr − r + 1], such that

(ℓ
1

1
, . . . , ℓ

1

r
) = (1, . . . , 1), and such that the Hamming distance between (ℓ

i

1
, . . . , ℓ

i

r
)

and (ℓ
i+1

1
, . . . , ℓ

i+1

r
) is 1 for i ∈ [kr − r].

• To label the rest of the pendant vertices in G, repeat the same procedure for each
of the n number of partite sets in Uj, j ∈ [p], as well as for the partite sets in Up+1 .
See Figure 3.

The d
ℓ
-sums of vertices in a partite set are all equal. Let s

i
denote the d

ℓ
-sum of a

representative vertex in V
i
, i ∈ [t]. Let x be the sum of all labels of vertices in Hn,t . Then

x − n + r, x − n + (r + 1), . . . , x − n + kr are the d
ℓ
-sums of representative vertices in

V1 , V2 , . . . , Vkr−r+1
respectively. Similarly, the d

ℓ
-sums of representative vertices in the n

partite sets in U
j

are x− (j+1)n+r, x− (j+1)n+(r+1), . . . , x− (j+1)n+(n+r−1) =
x − jn + (r − 1), j ∈ [p]. The same is true for Up+1 . This implies that st , st−1 , . . . , s1

are distinct consecutive integers. The d
ℓ
-sums of pendant vertices and vertices from the

same partite set do not affect the d-lucky number. Further, the value of k is optimum
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Figure 3: d-lucky labeling of H3,8,4-generalized cocktail-party graph

when t is such that all vertices in Vt are labeled k and n divides (t− (kr− r + 1)). Then
t = kr − r + 1 + n + . . . + n︸ ︷︷ ︸

(k−1) times

. We conclude that η
dl

(G) ≤ k =
⌈
t+n+r−1

n+r

⌉
.
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[11] M. Horňák, J. Przyby lo, M. Woźniak, A note on a directed version of the 1-2-3
Conjecture, Discrete Appl. Math. 236 (2018) 472–476.
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